Skip to main content

Simple Tensorflow example on iris dataset

This one trains the DNN on iris and also create confusion matrix. Comments will help you know what is happening.

===

#imports

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

# Load data

# Download it from here : https://archive.ics.uci.edu/ml/datasets/iris. Ensure that the categories are #labeled as Iris-setosa, Iris-virginica, Iris-versicolor and their column name as Species.
iris = pd.read_csv("irisdata.csv")

# explore what is loaded
#print(iris.shape)
#print(iris.head)

# Convert the data type of columns to float32 type

#print(iris.dtypes)

#print(iris.iloc[:,0:4])
iris.iloc[:,0:4] = iris.iloc[:,0:4].astype(np.float32)

#print(iris.dtypes)


# encode the classes to numeric values
iris["Species"] = iris["Species"].map({"Iris-setosa":0,"Iris-virginica":1,"Iris-versicolor":2})


# train test split
X_train, X_test, y_train, y_test = train_test_split(iris.iloc[:,0:4], iris["Species"], test_size=0.33, random_state=42)

# get only the column names of input features
columns = iris.columns[0:4]

#print(columns)


# these feature coulmns are made as real valued numbers
feature_columns = [tf.contrib.layers.real_valued_column(k) for k in columns]
feature_columns


# convert the input into format of the tensorflow

#takes in the dataframe and a series/vector and returns

def input_fn(df,labels):
    feature_cols = {k:tf.constant(df[k].values,shape = [df[k].size,1]) for k in columns}
    label = tf.constant(labels.values, shape = [labels.size,1])
    return feature_cols,label

# Define the classifier with hidden layers and number of classes and feature columns
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,hidden_units=[10,20,10],n_classes = 3)


# training the classifier while providing the input which is typecasted by the input function and also mention the iterations
classifier.fit(input_fn=lambda: input_fn(X_train,y_train),steps = 1000)


# evaluate the classifier
ev = classifier.evaluate(input_fn=lambda: input_fn(X_test,y_test),steps=1)


# convert values to the type of tensorflow for prediction only the input and not the label variable
def input_predict(df):
    feature_cols = {k:tf.constant(df[k].values,shape = [df[k].size,1]) for k in columns}
    return feature_cols


# prediction
pred = classifier.predict_classes(input_fn=lambda: input_predict(X_test))


# print prediction
print("The predictions")

#print(list(pred))

#Confusion Matrix
actual = list(y_test)
predicted = list(pred)
actual = pd.Series(actual)
predicted = pd.Series(predicted)
pd.crosstab(actual,predicted)
==
Major part of the code from Wei LI 

Comments

Popular posts from this blog

Publishing business basics

Basic Steps: 1. Decide name for the company 2. Register the company with ministry - you will need an attorney (Lawyer for that) 3. Register with Registrar of News Papers in India if it's a magazine/News paper.  4. Study the relevant acts in general or get them known from the lawyer 5. Start publishing Following are details regarding the same (not that well written) : ----- Some starts and books; * Start Your Own Self-Publishing Business (Entrepreneur Magazine's Start Up) by Entrepreneur Press  * How To Start And Run A Small Book Publishing Company: A Small Business Guide To Self-Publishing And Independent Publishing by Peter I. Hupalo  * Art & Science Of Book Publishing by Herbert S., Jr. Bailey  * This Business of Books: A Complete Overview of the Industry from Concept Through Sales by Claudia Suzanne Raja Rammohun Roy National Agency for ISBN West Block-I, Wing-6, 2nd Floor, Sector -I, R.K. Puram, New Delhi-110066 Some new things and t...

ती अशीच त्याला भेटली, अगदी अचानक आलेल्या पावसासारखी

खूप पावसाळे गेले. पण अगदी अलीकडे पर्यंत त्याला पाऊस कधीच आवडलेला नव्हता. पाऊस म्हंटल की त्याला भीती वाटायची, नसती कट कट वाटायची. भिजणे तर त्याला कधीच नको वाटायचे, उगाच सर्दी ला आमंत्रण. पण मागच्या पवसाळ्यात ढग असे आले आणि पाऊस इतका पडला की तो पावसाच्या प्रेमातच पडला. पाऊस आधीही पडायचा, कदाचित असाच, इतकाच किंवा जास्त ही. पण या वेळेस मात्र पाऊस एकटा आला नाही, त्याच्या आयुष्यात सोबत घेऊन आला तिच्या केसांचा ओला सुगंध. ती अशीच त्याला भेटली, अगदी अचानक आलेल्या मुंबईतल्या पावसासारखी, चिंब भिजलेली. त्याला ती आवडली आणि म्हणून पाऊस ही. ती त्याला पुन्हा भेटली, न ठरवून, अशीच पुन्हा एकदा अचानक पावसाराखीच. ते बोलले, थांबले, विसावले. ती समोर आली तेंव्हा पाऊस नव्हताच, ती अजून थोडी जवळ आली तेंव्हा ही पाऊस नव्हता. तो तिच्याकडे सारखा पहातच होता, पण नजर चोरून. आयुष्यात पहिल्यांदा त्याने पावसाकडे येण्याची विनवणी केली. आशेच्या नजरेने त्याने ढगांकडे पाहिले. ढग होते, पण अजून पाऊस मात्र नव्हता. तरी ही आजूबाजूंच्या झाडात, डोंगरात, फुलात आणि पाखरात ओलावा होताच. त्याच्या विनवनीने अखेर तो आला. रिम-झिम, रिम-झिम...

NVDIA AI India

 NVDIA AI some Insights after digesting the event with some Diwali Delicacies! I had good time at the NVIDIA AI Summit held at the Jio World Center in Mumbai. It felt like every company working on artificial intelligence in India was present, either as an exhibitor or an attendee. Some sessions were so packed that people were standing, and even then, many more were trying to get in. Much of the discussion revolved around Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG). These are undoubtedly central topics in AI today, drawing significant attention. I’m a huge admirer of RAG, but I still wouldn’t go as far as to say that “LLM (+RAG) is AI.” Although no one at the conference explicitly said this, it felt implied over the three days of sessions. I may be wrong, but I sensed a push for these technologies. Not just from NVIDIA, but from any hardware supplier, there’s an incentive to promote anything that drives demand for their solutions. NVIDIA’s GPUs are a backbo...